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DUALITY IN THE ANALYSIS OF SHELLS BY THE FINITE
ELEMENT METHOD

NGUYEN DANG HUNG

Faculty of Applied Sciences, University of Liege

Abstract—The static—geometric duality is a property particularly useful for application of the finite element
method to the analysis of doubly curved shells. After establishing the boundary conditions for Kirchhoff-Love
shells and finding the duality by the energy variational principle, this paper points out that, to every conforming
displacement element, one can let correspond an equilibrium element, and vice-versa. This is a generalization of
the slab analogy between the bending of plates and the stretching of membranes discovered some years ago by
Fraeijs de Veubeke and Zienkiewicz.

NOTATION
oy, 0 orthogonal curvilinear coordinates
A, A, Lamé parameters
R,,R, principal radiuses of curvature of the middle surface
P1,P2 radiuses of geodesic curvature
u, v, w displacement components
uv,w dual stress functions
£1,82,W, Oy components of membrane strain tensor
Ky K3, Ty, 1) components of curvature tensor
P, 0, rotation components

Ny,N,,N,;,,N,;, membrane force resultants
M,, M,,M,, M,, bending and torsion moment resultants

0,.0, transverse shear resultants
T stress tensor in matrix form
€ strain tensor in matrix form
[N] force matrix

[M] moment matrix

[x] curvature matrix

[H] Hooke’s matrix

oW strain energy variation

o complementary energy variation
E Young’s modulus

v Poisson’s ratio

h shell thickness

1. INTRODUCTION

THE finite element method is one of the most powerful numerical methods discovered
recently [1] for the analysis of complicated structures. It consists of dividing the structure
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in a certain number of finite elements with simple geometric shape and structural function.
In each element, suitable assumptions are made on the displacement field or the stress field,
or both at the same time. In this manner displacement models, equilibrium models or hybrid
models are obtained.

Among the displacement and equilibrium models there are two sets of dual elements
distinguished from others by their special properties. Thus, a displacement model is called
conforming if its displacement field satisfies a priori the internal compatibility conditions
and secures the continuity of this field on the boundary. Likewise, an equilibrium model is
faultless if the internal equilibrium conditions are fulfilled a priori by the assumed stress
field and continuous stress transmission is warranted at the edge. As shown in Ref. [2],
the first set of models yields an upper bound and the second, a lower bound of the direct
static influence coefficients. This property represents an important tool for the determina-
tion of the quality and the numerical evaluation of the element.

Although the construction of the conforming displacement models is not easy, it
presents fewer difficulties than that of the equilibrium models. A successful attempt to
get new possibilities of development of the last models has been made by Fraeijs de Veubeke
and Zienkiewicz [3] and afterwards by Elias Ziad [4]. They followed up on Southwell’s
analogy and proved that each conforming displacement element of membrane stretching
corresponds to an equilibrium element of plate bending, and vice versa.

In this paper, based on the static-geometric analogy of Lure [5] and Goldenveizer {6],
the duality is shown to be a general property of shell theory, of which plates and membranes
form particular cases.

2. FORMULATION OF THE GENERAL THEORY OF SHELLS

The general theory of the Kirchhoff-Love shells was first proposed in 1874 by Aron [8].
Generalizations and corrections were formulated by Love [9], Goldenveizer [5], Lure [6]
and Novozhilov [7].

In this section, the fundamental results from the theory of thin shells are collected as
presented by Novozhilov in his above mentioned book [7].

2.1 Strain relation

Let o, o, be an orthogonal curvilinear coordinate system which coincides with the
principal lines of curvature. The following symbols are defined

A,, A, corresponding Lamé parameters (first fundamental quadratic form of the
surface)

R, R, principal radiuses of curvature of the middle surface

P1, P, radiuses of geodesic curvature on the middle surface

1 1 o4, 1 1 04,

P2 a AyAy Ooy

P - A1A; uy’

u, v displacement components of a point on the middle surface
w vertical deflection of a point on the middle surface.
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The components of strain of the middle surface are obtained as

_ 1ou 1 8Alv w  Ou N voow
81T fou, A A, da, R, Agda, | p1 R
1ov 1 04, w ov U ow
g, = —U+— + ot
A,0u, A A, o, R, A26a2 P, R,
1oy 04, 10v u
wy = - u= -
A0, AA,00, A;0uy  py
10u 04, lou v
W, = — v = e
o — 10 low u 16w v
1 A0, Aoy, Ry, p\A,00, R,
= 10 low v 1ow  u
2 A,00,\A,00, R,| p\A 00y R,
10 0, 1ow + u
T4 = —— e ——— R
'S A00, 70 P T Tae R,
100, o, low v
. — _P2, = — i
g Ay, py° & Ayla; R,
We will also employ the following notations:
9 _ 1 6A1u_6A21) _ wz_wl
T 24,4, 60(2 ooy | 2
oy twy A0 N A0 | u
2 2|A,04, A2 Ayl \A, ] |

2.2 Compatibility equations
The three well known Gauss—Godazzi equations must be satisfied by the deformed

surface, so that the train components are related by the three compatibility equations:

0 6A A
2, (A2K2)+ (Al 1) 3 e
xy
1 04, o 0 0A, T
S A )= 2 e
l:a 1( 2 2)+ % 80{2( 10%) o, ng
5, 0A, 0A,
o A+ 5 = et~ 1t
1l 0 04, 0A,
_—[5 2( 181)+‘éa_w1 (Azwz)—é“z‘ﬁz

*
AAZ( 2

+6
Oa

Kl 0
R, R2 E)aZA

1 0A
{_‘[—5_ (/‘12002)4'_1
oy 2%

2
1 0 0A
|:6 (A,e3)+ -
23}

dy

e

=0

. (Alef)+a~/’3w*f]}

doy Ooy

Jaty Joty

0
Srot= L uon-2a |} o

1
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where

g =&}, &, = &%, K, = k¥ Ky = K3

Wy +w, Wy +w,
(,l);k = 72“ """" L] w; = 2 (5'

W, — W, Wy — Wy
* *
F=1,+ T —T,+
2R, 2 2R,

2.3 Equilibrium equations
The equivalent forces and moments acting on the sides of the shell are defined in Fig. 1.

Q
Q, A / M2
1
Nz\ M Mo ’/Mz M‘
az a2

ay [+ 2]

o

F1G. 1. Definitions of the force and moment resultants of the shell.

Let q4,4,, q, be the three components of the external forces acting on a unit area of
the middle surface. The following exact equilibrium equations are obtained by projecting
all forces on the three directions of the coordinate axes

1 [04,N, 0A,N,, 04, 04, 2
AN, —=2N, [+ =0
AIAZ[ o, T om, Tow, 12 am, :|tRTH
1 6A2N12 5A1N2 aAz aA] QZ
A1A2|: oa, | 0w, 0w, *am, TR, T (©)
L [04;N, | 044N, _&_&ano
A]AZ 60!1 (70(2 Rl R2
1 [04,M, 2AM,, 04, 04,
AlAZ[ 0oy Ooty +6a2 12 &lez &

- —_—— — = 0
A,Az[ 0oy + Oot, + duy Mo M |=2
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2.4 Strain energy

For a thin shell, it is possible to express the strain energy in terms of the components of
strain and stress of the middle surface:

oW = Jj[N,ésl +N,0e,+ Ny,00, + N,ydw, + Mok + My, + M, 01, +M21512:|

x A, A, da, do,. @®)
Putting

1‘421 M12
12 RZ 21 Rl

H=3M;;,+M,,)
w=w;+w,
W,

= ‘[2+—

W,
T=Tl+‘“ 5
2

Rl
where
6T =|N{N,SM;M,2H)|
el = |g e,0K,K,1],

the variation of the strain energy is finaily obtained as
5W= J‘J‘[O-Téa]AlAz dal da2 (9)

2.5 Strain—stress relations
Hooke’s law for a thin shell may be written in matrix form as

o = [H]e, (10)
where
(H] M
“lo N
and
1 v
M= Eh2 v 1
1—v 1—y
0 0 =
1 y 0
ERh?
N = 0
12(1—v?)
0 (1-v
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Then, the expression of strain energy is

W= %ff[sT[H]s]AlAz da, da, = %JJ[GT[H]_ 1614, A, do, das,

2
mff[ (8, +£2)* ~2(1 —v)(t,lsz—c—})]A A, da, da,

E
+mff[('ﬂ Fi,) = 2(1 = V) (K Ky — T2 A A, doty dary,

where h is the thickness of the shell.

or, explicitly:

(11

3. BOUNDARY CONDITIONS OF KIRCHHOFF-LOVE SHELLS
BY THE VARIATIONAL METHOD

The variation with respect to the displacements of the strain energy of the shells defined
by (8) may be written in the following form

oW = Jf[Nléﬁl +N25£2 +N125wl +N215w2 +M15K1 +M25K2 +M126T1 +M215T2}

M M —
XAlAzdal daz'f‘ff NIZ-N21+ 12—" 21 5 w2 wl AlAzd(xl d(xz,
R, R, 2

where the newly introduced bracket

Mll M21

2—N
21t R, R,

is shown to vanish as a consequence of the definitions

h/2 hj2 z
le:j‘ 0'12(1+ )dZ NZIZJ‘ 021(1+Rh)dz
1

—h/2 —hj2

/2 2 h/2 2
M, = f z(1+——)a dz M =f z(1+—~)a dz
12 w2 R2 12 21 w2 R1 21

of Ni,, Ny;, My, and M,,. Indeed,

+M12 My, __jh/z
217°R, R,

N12"—N

z z
1 +I~2-)(1 +—R§)(012~621)dz =0,

—h/2 1

because of the symmetry of the stress tensor. Now, the strain energy variation is arranged
in the form:

w, +w,

oW = J-J.[Nlésl +N2582+N125( ) +N215(82%0—1) +M 0k, + Mok,

Wy —
2R,

@y +w;
2R,

+M125(Tl+ )+M215( ):|A1A2 dal daz.
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Putting
W, +
— - — . - * = ook —
81‘_82, 83_625 wy = W = )
, o (12)

(U2+w1 * Wy —w

KT = Ky; K% =Ky, = 17 SR, 2 =1 2R

1 2

the strain energy becomes

W= ff[N,&s’{‘ +N,06% + N 200% + Ny 0w} + M, 0Kk% + MoKk + M ,,5T% + M, 5t%)

(13)
x A(A, da, da,.

The complementary energy variation may be written immediately by permutation of vari-
ables as

ff[g*(SN +é 5N2+(D 5N12+(U26N21+K15M1+K 5M2+T 5M12+T25M21]

(14)
x A1 A, day da,.

For convenience, the strain energy is decomposed in different terms:
5W = 5W‘ +5W2 +5W3+6W4+5W5,

where

5Wl = J\J‘ [N1681 +N2682+N126w1 +N215(D2]A1A2 dal daz

SW, + OWs + 8W, + 5W; = ”[Mlaxl+M25x2+M,zazl+M21512]A1A2 da, dot, .

The quantities 6W,, W;, 6W,, W will be defined later on.
Substituting now the membrane strain components by their values from (1), one obtains

e

0 04,
W, = ff{a—a—l(NlAzéu) (N A, )5u+Nza ou+ 6012

0
—=0v —6712(N2A 1)ov

N,A, A A A 0 é oA
+L&‘_—25w+N, ;Ql25w+67(N2Alév)—5a’(A2N12)5v— 175, 21(314
N ,4,5 oA
M (NZ,A Sw)— ——(A N,)ou—N» Z26u b da, da,.
(30(1 50(2

Taking into consideration the Gauss—Ostrogradski formula

aAzfz 04, i _
ff( 7o, (30(2 )drxl da, —§(n.f)ds,
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the expression of W, can be transformed by partial integration as follows

. 3 (7 oA A ).
le = §n[N](SD_J\J.{[(’Ta_l‘(NIAZ)—Fga_Z(AlNZI) NZ e ! leaa:]bu

0 0 0A, 04
+] 2 (N2A )+ (AN 5) = Ny 24 Ny =2 o (15)
Oat, doty Joty 0o,
N,A,A, N,AA,
—— = ——F 1w, d
+[ R, + R, w o da, day,
where the matrix [N] and the displacement vector D are defined by
Nl NlZ
(N] =
N21 NZ
DT = |uy).

Introducing the explicit expression (2) of the components of the curvature tensor in W, +
oW, + 6W, + 6W; gives

e e oo

| 0 10 | l 0 10 |
+M, Azaal( . aléw) +M,, Ay 2( ¥ 15w) }doc1 oy

(16)
ou a ov 0 [ou
R R o IR R I R ]
0 [ou
+M21[A16 (Rl)]}daldaz
0A,( 10 0A,( 10 )
W, =
5 4 ff{Ml[ (70:2 (A,ﬁotz )] [ 50(1 (Alaalé )]
0A, 04, 10
XMU[ ‘7“2( Aoy )]+ [ “1( Azaazaw)]}daldaz a7
_ 04, v 04, ou _04,[du
5W5“”§M‘[ 6a2( )] M[ 60(1( Rl)]+M‘2[ doy \ R,
+M21[ aA‘(z“)]}da,daz
2
Integrating by parts the second term, one finds,
oW, = —ﬁn[M]égradwds+J‘J‘ P, grad wda, do,, (18)
where
[M]=]M1 My,
MZI M2
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and the vector P, is defined as

A AP, =[ (M, A2)+ (MZAI)]el [ (M12A2)+ (MZAI)]

(19)

[ (M A5) 4=~ (MZIAl)] [ (Miad) (M3, )]j’
2

where e; and e, are the unit vectors along the coordinate lines q, , a, and

_o _ o

g1 = ooy’ B2 = dat,

are the partial derivatives of the position vector r of a point of the middle surface.

Recalling now the formula of variational analysis:
vgrad ¥ = div(¥v) — WY divv

with

divv = (A A+

(A Azv?),

1 1
A, A, da, A A, ou,

the last term of the right member of equation (18) may be transformed as follows:
ff P, grad owA A, do, do, = §(nP16w) ds—fJ. divP,éwA, A, da, da,.
Then
oW, = §(—n[M]5 grad w+nP,dw)ds— ffdiv P,6wA A4, da, do,. (20)

Applying again the Gauss—Ostrograski formula mentioned above, 6W; is reduced to

oW, = §n[M][x]5D ds—fPl[x](SD do; da, 4.4, (21)
where the curvature matrix is
1
R,
1=
[x N
R,
In the same way,
oW, = § [n.P,0W))ds— J (divP,0w)4, 4, da, do, (22)

where

0A 0A 0A 0A
A AP, = | M, 22 M, 222 922 22
112K, [( 12 aal Mzadl)el+(M216(Zl Mladz)ez]
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As to the last term SW;, it may be expressed in terms of P, and D. One has

04, 5v 3A2 du 04, bu 04, ov
oW, = M,— ——M,— M
5T f_j‘{ ! 50(2 R2 2 50!1 R1 12 50(2 Rl 21 Bey 5 RZ d“l daz

5W5 = _J‘ v{. Pz[X]&DAIAZ dml daz . (23)
In short, the strain energy variation W may be divided in two parts: In the interior

W, = — f J' QLX16D A, A, da, doy — f f div QéwA, 4, do, dat,

0A 04,
[l A2)+62(A O

(24)
[ (N2A1)+ (Aszz)
0A 04, N,AjA;, N;A A,
Nla " Nﬂa ]5v+[ R, + R, owp day da,
where
Q = P1 +P2.
At the boundary
oW, = §n{[N]+[M] [x]}6D ds+ ﬁ{—n[M]S grad w+nQ} ds 2%5)

On the other hand, the variation of the potential energy of external forces is given by

5P = — f f [qFow+q*8D] dS— §n[N*]51) ds— §M:&%L: ds— §Q:5w ds—Zow, (26)

where
q* = |q¥q%] is the loading vector on the middle surface,
g% = the vertical component of the surface loading.
Obviously,
qt = A1 49,
q3 = A;A1q,

qr = A14,q,
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Also,

N¥ = external normal force

M} = external moment

QO = external transverse force applied on the boundary and
Z; = external concentrated transverse force.

It should also be noted that the surface element is defined as

dS = A1A2 d(ll daz.

The principle of minimum potential energy requires therefore, that

1l

SW+P)=0.
For oD arbitrary
0A,
S A+ AN~ N, 2 2, T g — 0
a oy a 5 Rl
84, 04, Q @7
(Nz 1)+ (A Ni)— Nl@ +M15’3+ =24 qg3=0
5] 231
For éw arbitrary
A A, N,A A
(A2Q1)+ A0+ A= =gt =0, (28)
1
where from (19) and (22)
0A 0A
A14,0, = (M A2)+ (M21A1)+M12 o, LM, aaz
oA aA1 ' ®)
A14,0, = (M12A2)+ (M A)+My — oM,
doty do,
At the boundary
Putting
M, =n"[Mn
N, =n"[Nn
M, =n"[M]t
Nnt = nT[N]t7

the boundary part of strain energy may be modified as follows:

§ nT{[N] +[M] [x]}éD ds+ § {—nT[M]é grad w +nTQ6w} ds

&{(N +1;I )6 +(N,,,+A; )5u,+Q,,6w}ds+§{M 66w g M, ow— 0 M,,,(Sw}d
n t

e e R e

+ UM (5= 0)— M5+ O)]w;,
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and the following results are obtained at the boundary for the condition (W +P) =

ur =, )
f.or (30),
NE =N,
uF = u,
2.0r M (30,
N:t = Nm'*'f
w* = w
3. 0r M (30),
- nt
Qﬂ - Qﬁ+ 51{
o _ o
on on
4. or {30},
M} = M,
wF = w
5 or (30)s

Z; = M{8;—0)—M,,{s; + 0}

As a conclusion, if the continuity of the curvature of the middle surface is secured, a dis-
placement model of Kirchhoff-Love shells is conforming when the following boundary
conditions are satisfied at the interface of neighbouring elements:

o) =) ]
u, ) ={u
() = (u,) a1
W), = (w)_ (
ow _ ow
\én| . \onf_ |
Notice that the rotation vector is defined as
o = —grad w+[y]D = ¢, + 0,8, = g+t
and
_
o= "% TR
Finally the conditions (31) may be written as
(tty,) = (1,)
7] =
( t;,) (ur‘) (32)
(W) =W

({pm) = {@n«}
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4. DUALITY IN THE THEORY OF KIRCHHOFF-LOVE SHELLS

Equations (32) prove that a conforming displacement model requires a priori the con-
tinuity of the quantities u,, u,, w, @,.

To develop such an element, one must formulate suitable assumptions about these
quantities and define generalized displacement coordinates that determine completely
the conformity along each edge. The equilibrium of the element will be insured by the
variational principle of total strain energy. In absence of surface forces, the equilibrium
equations obtained by the variational principle are, by (27) and (28):

é é 0A 0A
A N+ o (AN )+ N = N, 2 Q‘ 0
bo, 0x, Jot,
8 0 3A2 Q2
(N A+ (4 N, -
aaz(Nz 1)+6a (A;N )+ 2, 21 1 6 o (33)
(A2Q1)+ (A.Q:)+N’A"”+N‘A‘A2 —o,
R, R,
where, by (29), the quantities Q, , Q, are such that:
OM,A;, M, A, 8A, . oA,
= a2 et SNV Sint W Y St
Al =5 %, tMug MG
. (34)
OM,A, OM,A, 04y, 24,
= M, 2_pm L
A2A1Q2 512 + 60(1 + 2 6 (3] aaz

These equilibrium equations are, moreover, exact, because they are identical to the projec-
tion equations (6) and (7) of the general shell theory. The quantities Q,, Q,, defined by
equation (34) are identified with the transverse shearing forces, because they express the
equilibrium of the shell element in the transverse direction.

To develop conforming models, some assumptions are made on the stress components,
such that internal equilibrium is satisfied (2] on the one hand, and the continuity of the stress
components defined along the edges is secured on the other hand.

The compatibility is insured by the principle of minimum complementary energy. The
variation of the complementary energy is

o = JJ[816N1+8 ON,+w¥dN , + wEON,, +kTOM | +x36M,

(35)
+ T?éMll + ‘C;(SMZ,]AIAZ dal daz

The compatibility equations may be rediscovered by applying the variational principle
if one takes into account that the eight stress components N,, N,, Ny, N,o, M, M, M,
M,, are derived from three independent quantities: U(a,,a,), Viay,a;), Wia,,a,)
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(representing generalized Airy stress functions) by the following relations:
N, = K3(U, V. W)

N, = KU,V W)

Ny, = THU, W)

Ny = —THU, V. W)

21 1 (36)
M, = EXU,V,W)

M, = —EY(U,V, W)

M, = —Q3(U, V. W)
M, = QU VW)

The operators E¥, E%, QFf, Q%, K%, K%, TY, T% act on the stress functions U, ¥, W in the
same way that the eight modified strain components e¥, ¥, wf, wi, kT, «3, tf, 7§ act on the
displacement components U, V, W. The definitions of strain components are given previously
by the general theory [see formulae (1), (2) and (5)].

Conversely, the conjugated asterisk strain components are related to the stress com-
ponents by the following dual relations:

e = —mylu, v, w)
e = —mu,v,w)
¥ = my(u,0,w)
0% = —myy(u,0,w) (37
k¥ = ny(u, v, w)
Ky = ny(u, v, w)

Ty = —ny(u,v,w)

Ty = —nyau, v, w)

where the eight operators ny, n,, ny,, Hay, My, My, My,, My, are related to the displace-
ments u, v, w as the eight stress components to the stress functions U, V, W.

The compatibility conditions are formed by substituting quantities (36) and (37) into
expression (35) of the complementary energy :

(38)
+m,,0TY]A, 4, do; da,

Then, by comparison it can be seen that this equation is (except for the sign) similar to the
variation of strain energy defined by equation (13); rewritten here as

SW = f f [N 362 + N,068 + N 1 p000% + N5, 5008 + M 31t -+ M,0K% + M, ;60

(39
+ M, 61314, A, da, do,.
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Attention must be paid to the fact that the variation of (39) is taken on the displacements
u, v, wand the variation of (38) is made on the dual quantities U, ¥, W.

The previous variational calculations could be avoided, simply by comparing the energy
equations (38) and (39), and rewriting equations (33), with a few differences of sign

A N
("1 2)+ (A1”21)+ "12‘*‘"2 E +% =
o 1
04,
(n2A1)+ ("‘12”12)+ "21'*' 1 +23 =0 ¢ {40)
da, R,
2 _nzA A, mAd,
60(1 {4,071 )+ (A1Q2) R, R, =0

5m1A2 amzAl 514 8A2
Ooy + Oa, M oo, Fo 60:1
omy,A, omA, 04, 0A,

AAQ, = —— 2Ly A2 gy T2y L
1420, Oot,y dory M1 Jory +m dat,

A1A20,

(41)

By substituting the values of ny, n,, ny,, ny,, my, my, my,, m,, defined by equations (37),
the equations which should be obtained by the variational principle of complementary
energy are immediately found as:

04 é
et~ (A11)+——i et 22,8 g
! da, R1
04, , 04
R B +2=0 @)
£33
A, xk%A4,4
—AM&H m&axl"i;i=o
2 2
58’5,/12 30)1/11 aAl 5A2
A A = ¥
1A = et . % e, o, )
0etA, JdwiA, 6A2 « 044
A, A = B
2410 ooy + oo, of oty 280:2
Equations (43) may be transformed as follows:
U VW) 100
0, =2 )y U, v,w)
RZ Aza 253
44)

AU K W) 100
R2 Aléal

g, =
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where ¢,, ¢,, ® are dual quantities of ¢, ¢,, 6 defined by relations (2) and (3).
Replacing now @, Q, by their values (43) into equations (42) one obtains

51—(A2x§)+%{r§)~%{x4ﬁf)—%lc? *ﬁl—x{é&? (Aze§)+i‘z: w3
~5§;(Alw=r)~%’£2—sf] -0
A+ ey )= az——%b%mxem%fwf
b
'"Ia‘ij( zwz)_%gg} =0
AlAz(g-l»f%)—é{%[*%(ﬂzm3)+%8§“%(Ang)"‘%w?:}}
+£—1{—1‘—:—1—[£1 (Az&:’é‘)wL%gZl w?—égg(Ale)“%gf ET:I} =0

(45)

Equations {45) are identical to the compatibility conditions {4) of the general shell
theory. Consequently if the generalized Airy functions U, V, W are chosen in such a way that
the derived stress components are defined by equations (36), the internal compatibility is

secured by the variational principle of the complementary energy.

5. CONTINUITY OF STRESSES AT THE BOUNDARY

If the functions U, ¥, Ware conforming along the edges in the same way as the displace-
ments u, v, w, the stress transmission is perfectly continuous, Indeed, let us now consider an
arbitrary face normal to the shell surface element along the o, direction of the orthogonal

curvilinear coordinate system. In these conditions, the derivation operators become:

0 _2
Ada, Ot
A
A,0a, On

(46)

Moreover, the variational calculations given above shows that the Kirchhoff equivalent
stress components are four (Fig. 2) and may be related to the five stress components defined

on an arbitrary edge by the relations.

oM,
f = Qn+ 6t :
M
NG = Nuz‘{‘}?’g > s
(1
N¥ =N,
M} =M,

(47)
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F1G. 2. The equivalent stress components, the geodesic radiuses of curvature and the principal radiuses of
curvature.

which, in their turn, may be directly deduced from the quantities U, ¥, W by analogy (36)
and equations (46)

« 0 _6W+U" +1 _6_Vlj+U,
" al a R p\ n R,
ou, U, W
M} = — ] .
* ( P +p.+ R,) \ (48)
.09, &, 1][0U, U,
* _ Py -t
A A A Y B
To obtain Q,, one must refer to equations (44) which determine the value of Q,
o, 00
Qn—En“E»
and then
oM ®, (U, U
* LRl SrTOR B S
Or = Qnt ot R,,+at(6t p,)’ (49)
with
®. = 6W+U(
" dn R,
W U
o =W U

o TR
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Equations (48) and (49) prove that the equilibrium at an interface is equivalent to the
continuity of the stress functions U, ¥, W, 6W/dn along this interface. These conditions
are proper to conforming models, which require a priori the continuity of dual quantities
U,, U, W, ow/on.

The conclusion is that, to each conforming element of shells with double curvature, one may
let correspond a perfect equilibrium element, and vice versa. Introducing suitable assumptions
on the displacements field for compatible shell elements is equivalent to formulating the
generalized Airy functions in equilibrium shell elements,

This duality is a generalization of the results obtained by Fraeijs de Veubeke and
Zienkiewicz {3]. In fact, in the case of a plane membrane, we have to consider only the
following strain components:
du v sy 1(5v éu)

"o PTey T2 TaAaTy
which may be deduced from equations (1). One observes that here :

= =0, (50)

These strain components possess, by (36), the conjugate quantities

v oU 1{eVv ¢eU
M= M=o xv-i(é?a?)’

which are just the stress components of a plate in bending. The symbols U and V are, except
for the sign, the Southwell stress functions.
Therefore, each conforming element of a plane membrane carries a perfect equilibrium
element of a bending plate, and vice versa.
Moreover, in the Kirchhoff theory of bent plates, the curvatures generated by the
internal bending moments are related to the transverse displacement W by the relations
*w *w 0*w

K, == —- - = —— = K. =

T TR T e TR T gy

which may be deduced from equations (2) under the same conditions as {50). According to
the duality (36), the conjugate stress components are:
3w *W W

N=-2"2 N=-20, N,=N_=°_,
¥ oy? y ox? Y ¥ 9xdy

which are just the stress components in the plane membrane, The quantity W is except for
the sign the usual Airy stress function.

Therefore, to each conforming element of bent plate corresponds a perfect equilibrium
element of a plane membrane, and vice versa.

On the other hand, in the membrane shell theory, only the following stress components
are considered :

NI’N23N12$N21'
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According to (36) and (37), the determination of these quantities is equivalent to that of the
curvature quantities

* % ok %K
Kz,Kl, TZ’TI'

Therefore there is a connection between the theory of infinitesimal flexure and the membrane
theory of shells.
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Resumé—La dualité statico-géométrique est une propriété particulierement utile dans 'application de la méthode
des éléments finis au calcul des coques 4 double courbure. Aprés avoir fait ressortir les conditions de bord des
coques de Kirchhoff-Love et retrouvé la dualité par le principe variationnel de 1'énergie, ce mémoire se propose
de dégager le fait qu’a chaque modéle de déplacement pur des coques, on peut faire correspondre un modéle
d’équilibre pur et vice-versa. Ceci constitue une généralisation de la dualité existante entre les membranes planes en
extension et des plaques en flexion, propriété remarquée il y a quelques années par Fraeijs de Veubeke et Zienkie-
wicz.

AGcTpakT—CTaTHKO-TEOMETPHYECKHI AYANnyu3M ABNSETCA CHEUHUASIBHO MOJEIHBIM CBOKCTBOM IS TIPAME-
HEHMS METO1a KOHEYHOTO 3JIEMEHTA K pacueTy 060104ek NBORHON KpUBH3HBIL. T10CIIE YCTAHOBIIEHHS IPAHKY-
HBIX YCnoBull insg 060J1049eK M ONpeaeieHys Ayald3Ma, C HTOMOILBIO BAPHALIMOHHOrO NMPHMHLMNA, YKa3bi-
paercs B pabore, YTO KakABIA COOTBETCTBYIOLUMY 3JIEMEHT MOXKET COTIACOBBIBATHECA C E€JIEMEHTOM
paBHOBecHS U Hao0opoT. 310 ABNseTCA 00O0LIEHNEM CTEPKHEBOR AaHATIOTHH MEXAY M3rHOoM InNacTHHOK
U pacTaxeHneM MeMOpaH, OTKpPBITHIM HECKOJNIBKO NieT Halzax ¢paeuiicoM ne Bemexe u 3eHkeBnueMm.



